Bladder cancer (WP2828)
The urothelium covers the luminal surface of almost the entire urinary tract, extending from the renal pelvis, through the ureter and bladder, to the proximal urethra. The majority of urothelial carcinoma are bladder carcinomas, and urothelial carcinomas of the renal pelvis and ureter account for only approximately 7% of the total. Urothelial tumours arise and evolve through divergent phenotypic pathways. Some tumours progress from urothelial hyperplasia to low-grade non-invasive superficial papillary tumours. More aggressive variants arise either from flat, high-grade carcinoma in situ (CIS) and progress to invasive tumours, or they arise de novo as invasive tumours. Low-grade papillary tumors frequently show a constitutive activation of the receptor tyrosine kinase-Ras pathway, exhibiting activating mutations in the HRAS and fibroblast growth factor receptor 3 (FGFR3) genes. In contrast, CIS and invasive tumors frequently show alterations in the TP53 and RB genes and pathways. Invasion and metastases are promoted by several factors that alter the tumour microenvironment, including the aberrant expression of E-cadherins (E-cad), matrix metalloproteinases (MMPs), angiogenic factors such as vascular endothelial growth factor (VEGF). Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP2828 CPTAC Assay Portal]
Authors
Oneshin , Kristina Hanspers , Maintenance bot , Zahra Roudbari , Anders Riutta , Egon Willighagen , Friederike Ehrhart , Eric Weitz , and Finterly HuCited In
Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.
Organism
Homo sapiensCommunities
CPTAC DiseasesAnnotations
Pathway Ontology: disease pathway cancer pathway
Disease Ontology: bladder disease urinary bladder cancer cancer papillary renal cell carcinoma
Cell Type Ontology: bladder urothelial cell
Participants
Label | Type | Compact Identifier |
---|---|---|
DAPK1 | GeneProduct | ncbigene:1612 |
CCND1 | GeneProduct | ncbigene:595 |
E2F1 | GeneProduct | ncbigene:1869 |
VEGFA | GeneProduct | ncbigene:7422 |
FGFR3 | GeneProduct | ensembl:ENSG00000068078 |
EGF | GeneProduct | ensembl:ENSG00000138798 |
C-MYC | GeneProduct | ncbigene:4609 |
CDH1 | GeneProduct | ncbigene:999 |
DAPK2 | GeneProduct | ncbigene:23604 |
THBS1 | GeneProduct | ncbigene:7057 |
EGFR | GeneProduct | ncbigene:1956 |
CDKN1A | GeneProduct | ncbigene:1026 |
MSK1 | GeneProduct | ncbigene:9252 |
CDKN2A | GeneProduct | ncbigene:1029 |
CDKN2A | GeneProduct | ncbigene:1029 |
IL8 | GeneProduct | ncbigene:3576 |
ERBB2 | GeneProduct | ncbigene:2064 |
p85-Beta | GeneProduct | ncbigene:5296 |
MMP1 | GeneProduct | ncbigene:4312 |
BRAF | GeneProduct | ncbigene:673 |
MDM2 | GeneProduct | ncbigene:4193 |
DAPK3 | GeneProduct | ncbigene:1613 |
HRAS | GeneProduct | ncbigene:3265 |
TP53 | GeneProduct | ncbigene:7157 |
TYMP | GeneProduct | ncbigene:1890 |
RB1 | GeneProduct | ncbigene:5925 |
HRAS | GeneProduct | ncbigene:3265 |
p85-ALPHA | GeneProduct | ncbigene:5295 |
RASSF1 | GeneProduct | ncbigene:11186 |
CDK4 | GeneProduct | ncbigene:1019 |
NRAS | GeneProduct | ensembl:ENSG00000213281 |
KRAS | GeneProduct | ensembl:ENSG00000133703 |
RAF1 | GeneProduct | ensembl:ENSG00000132155 |
ARAF | GeneProduct | ensembl:ENSG00000078061 |
DAPK1 | GeneProduct | ncbigene:1612 |
DAPK2 | GeneProduct | ncbigene:23604 |
DAPK3 | GeneProduct | ncbigene:1613 |
RASSF1 | GeneProduct | ncbigene:11186 |
MMP2 | GeneProduct | ensembl:ENSG00000087245 |
MMP9 | GeneProduct | ensembl:ENSG00000100985 |
HBEGF | GeneProduct | ensembl:ENSG00000113070 |
UPK3A | GeneProduct | ensembl:ENSG00000100373 |
SRC | GeneProduct | ensembl:ENSG00000197122 |
MMP2 | GeneProduct | ensembl:ENSG00000087245 |
MMP9 | GeneProduct | ensembl:ENSG00000100985 |
MAP2K1 | GeneProduct | ensembl:ENSG00000169032 |
MAP2K2 | GeneProduct | ensembl:ENSG00000126934 |
MAPK1 | GeneProduct | ensembl:ENSG00000100030 |
References
- Wolff EM, Liang G, Jones PA. Mechanisms of Disease: genetic and epigenetic alterations that drive bladder cancer. Nat Clin Pract Urol. 2005 Oct;2(10):502–10. PubMed Europe PMC Scholia
- Juanpere N, Agell L, Lorenzo M, de Muga S, López-Vilaró L, Murillo R, et al. Mutations in FGFR3 and PIK3CA, singly or combined with RAS and AKT1, are associated with AKT but not with MAPK pathway activation in urothelial bladder cancer. Hum Pathol. 2012 Oct;43(10):1573–82. PubMed Europe PMC Scholia
- di Martino E, Tomlinson DC, Knowles MA. A Decade of FGF Receptor Research in Bladder Cancer: Past, Present, and Future Challenges. Adv Urol. 2012;2012:429213. PubMed Europe PMC Scholia
- Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet. 2013 Feb 15;22(4):795–803. PubMed Europe PMC Scholia
- Calderaro J, Rebouissou S, de Koning L, Masmoudi A, Hérault A, Dubois T, et al. PI3K/AKT pathway activation in bladder carcinogenesis. Int J Cancer. 2014 Apr 15;134(8):1776–84. PubMed Europe PMC Scholia