Overview of nanoparticle effects (WP3287)

This pathway is giving a summary of currently known nanoparticle effects on cells and organisms. Although there is currently no nanoparticle-specific effect known, there is a cascade of effects triggered if cells or organisms are exposed to nanoparticles: The most abundantly observed event is oxidative stress which causes DNA damage, protein and lipid oxidation, and cell death. The mere overload of nanoparticles in the vesicular system leads to cytoskeleton and cell adhesion problems and interfere with the cell's autophagic system. Some specific nanoparticles are reported to interfere with the cell membrane, others stimulate the blood coagulation system. The release of metal ions from specific nanoparticles challenges the metal disposal system of the cell.
last edited


Fehrhart, Mkutmon, Lindarieswijk, Egonw, MaintBot, and Eweitz

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.


Homo sapiens


Adverse Outcome Pathways Nanomaterials Pathways


Pathway Ontology: nanomaterial response pathway


Label Type Compact Identifier
Oxidative stress Pathway wikipathways:WP408
AKT GeneProduct ensembl:ENSG00000117020
Prostaglandin pathway Pathway wikipathways:WP98
Angiogenesis Pathway wikipathways:WP1539
ferritin GeneProduct pfam:PF00210
C-reactive protein GeneProduct ensembl:ENSG00000132693
COX2 (PTGS2) GeneProduct ensembl:ENSG00000073756
Glutathione Metabolite chebi:16856
DNA damage response Pathway wikipathways:WP707
TNF-a Signaling Pathway wikipathways:WP231
Cytoskeleton Pathway wikipathways:WP51
PI3K GeneProduct ensembl:ENSG00000171608
Il-6 signaling Pathway wikipathways:WP364
Integrin GeneProduct ensembl:ENSG00000156886
HMOX1 GeneProduct ensembl:ENSG00000100292
Autophagic cell death Pathway wikipathways:WP2509
Cell cycle Pathway wikipathways:WP179
FAK (PTK2) GeneProduct ensembl:ENSG00000169398
Nanoparticle Metabolite chebi:50803
Immune systemup or down regulation Pathway wikipathways:WP2783
Necrosis Pathway wikipathways:WP2513
Cell adhesion Pathway wikipathways:WP306
Blood coagulation Pathway wikipathways:WP558
Inflammation Pathway wikipathways:WP453
Metallothionein GeneProduct pfam:PF00131
Prostaglandin Metabolite chebi:26333
Necroptosis Pathway wikipathways:WP2513
Differentiation Pathway wikipathways:WP2848
COX1 (PTGS1) GeneProduct ensembl:ENSG00000095303
Actin GeneProduct pfam:PF00022
P-cadherin GeneProduct ensembl:ENSG00000062038
Apoptosis Pathway wikipathways:WP2507
fibronectin GeneProduct ensembl:ENSG00000115414
collagen IV GeneProduct ensembl:ENSG00000187498
NF-kB GeneProduct ensembl:ENSG00000170322
Bax GeneProduct ensembl:ENSG00000087088
IL-6 GeneProduct ensembl:ENSG00000136244
Il-8 GeneProduct ensembl:ENSG00000169429
Bcl-2 GeneProduct ensembl:ENSG00000171791
TNF GeneProduct ensembl:ENSG00000232810
cyclin D3 GeneProduct ensembl:ENSG00000112576
laminin GeneProduct ensembl:ENSG00000053747


  1. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006 Feb 3;311(5761):622–7. PubMed Europe PMC Scholia
  2. Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro. 2006 Oct;20(7):1202–12. PubMed Europe PMC Scholia
  3. Li J-G, Li W-X, Xu J-Y, Cai X-Q, Liu R-L, Li Y-J, et al. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol. 2007 Aug;22(4):415–21. PubMed Europe PMC Scholia
  4. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology. 2010 Feb;151(2):458–65. PubMed Europe PMC Scholia
  5. Ma L, Zhao J, Wang J, Liu J, Duan Y, Liu H, et al. The Acute Liver Injury in Mice Caused by Nano-Anatase TiO2. Nanoscale Res Lett. 2009 Aug 1;4(11):1275–85. PubMed Europe PMC Scholia
  6. Johnson-Lyles DN, Peifley K, Lockett S, Neun BW, Hansen M, Clogston J, et al. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol. 2010 Nov 1;248(3):249–58. PubMed Europe PMC Scholia
  7. Nawrot TS, Perez L, Künzli N, Munters E, Nemery B. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet. 2011 Feb 26;377(9767):732–40. PubMed Europe PMC Scholia
  8. Greish K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, et al. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology. 2012 Nov;6(7):713–23. PubMed Europe PMC Scholia
  9. Ma Y-H, Huang C-P, Tsai J-S, Shen M-Y, Li Y-K, Lin L-Y. Water-soluble germanium nanoparticles cause necrotic cell death and the damage can be attenuated by blocking the transduction of necrotic signaling pathway. Toxicol Lett. 2011 Dec 15;207(3):258–69. PubMed Europe PMC Scholia
  10. Andón FT, Fadeel B. Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials. Acc Chem Res. 2013 Mar 19;46(3):733–42. PubMed Europe PMC Scholia
  11. Hohnholt MC, Geppert M, Luther EM, Petters C, Bulcke F, Dringen R. Handling of iron oxide and silver nanoparticles by astrocytes. Neurochem Res. 2013 Feb;38(2):227–39. PubMed Europe PMC Scholia
  12. Du Z, Zhao D, Jing L, Cui G, Jin M, Li Y, et al. Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation. Cardiovasc Toxicol. 2013 Sep;13(3):194–207. PubMed Europe PMC Scholia
  13. Rauch J, Kolch W, Laurent S, Mahmoudi M. Big signals from small particles: regulation of cell signaling pathways by nanoparticles. Chem Rev. 2013 May 8;113(5):3391–406. PubMed Europe PMC Scholia
  14. Chen T, Hu J, Chen C, Pu J, Cui X, Jia G. Cardiovascular effects of pulmonary exposure to titanium dioxide nanoparticles in ApoE knockout mice. J Nanosci Nanotechnol. 2013 May;13(5):3214–22. PubMed Europe PMC Scholia
  15. Nemmar A, Holme JA, Rosas I, Schwarze PE, Alfaro-Moreno E. Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. Biomed Res Int. 2013;2013:279371. PubMed Europe PMC Scholia
  16. Triboulet S, Aude-Garcia C, Carrière M, Diemer H, Proamer F, Habert A, et al. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses. Mol Cell Proteomics. 2013 Nov;12(11):3108–22. PubMed Europe PMC Scholia
  17. Ilinskaya AN, Dobrovolskaia MA. Immunosuppressive and anti-inflammatory properties of engineered nanomaterials. Br J Pharmacol. 2014 Sep;171(17):3988–4000. PubMed Europe PMC Scholia
  18. Azim SAA, Darwish HA, Rizk MZ, Ali SA, Kadry MO. Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: possible role of some antioxidants. Exp Toxicol Pathol. 2015 Apr;67(4):305–14. PubMed Europe PMC Scholia