7-oxo-C and 7-beta-HC pathways (WP5064)

The Oxysterol group of compounds are oxygenated derivatives of cholesterol or its sterol precursors, e.g. 7-dehydrocholesterol (7-DHC) or desmosterol. There are three mechanisms leading to the formation of oxysterols: 1. Enzymatically (first steps of sterol metabolism, being intermediates for the formation of steroid hormones, bile acids and 1,25-dihydroxyvitamin D3); see [https://www.wikipathways.org/index.php/Pathway:WP4545 WP4545]. 2. Non-enzymatically by encountering reactive oxygen species (ROS), providing a second pool of metabolites (this pool also includes oxidized cholesterol molecules taken in from diet); described in this pathway. 3. Generation by the gut microflora and uptake through the enterohepatic circulation. Previously oxysterols where though to be inactive metabolic intermediates, however recent findings have established that these metabolites are involved in cholesterol homoeostasis, can be ligands to nuclear and G protein-coupled receptors and biomarkers of diseases (for example Niemann-Pick disease). This pathway describes Figure 4 and 5 from Griffiths et al (2020) [https://dx.doi.org/10.1016%2Fj.prostaglandins.2019.106381] and will be extended with disease information.
last edited

Authors

DeSl, Eweitz, and Egonw

Cited In

Are you planning to include this pathway in your next publication? See How to Cite and add a link here to your paper once it's online.

Organism

Homo sapiens

Communities

Inborn Errors of Metabolism (IEM) Pathways Lipids and LIPID MAPS

Annotations

Pathway Ontology: cholesterol metabolic pathway classic metabolic pathway Smith-Lemli-Opitz Syndrome pathway

Disease Ontology: Niemann-Pick disease type A Niemann-Pick disease type B Niemann-Pick disease type C1 Smith-Lemli-Opitz syndrome Niemann-Pick disease type C2

Participants

Label Type Compact Identifier
7-Dehydrocholesterol Metabolite inchikey:UCTLRSWJYQTBFZ-DDPQNLDTSA-N
3b,5a,6b-Trihydroxycholan-24-oyl-glycine Metabolite inchikey:PVXZQUUYXFMXMF-ABSIFXOISA-N
3b,7b-Dihydroxychol-5-en-24-oic acid Metabolite inchikey:PXHCARRJGFGPAC-SZQOYVLDSA-N
Irinotecan PW Pathway wikipathways:WP229
Cholesterol Metabolite inchikey:HVYWMOMLDIMFJA-DPAQBDIFSA-N
Sphingolipid degradation Pathway wikipathways:WP4153
7b-Hydroxycholesterol Metabolite inchikey:OYXZMSRRJOYLLO-KGZHIOMZSA-N
(25R)26-Hydroxy-7-oxocholesterol Metabolite inchikey:LFNAJBFFWWMSEW-HNFKANRHSA-N
5alpha-specificDDA synthase Protein None
Dendrogenin A Metabolite inchikey:AVFNYTPENXWWCA-BULFVYHESA-N
Cholestane-3b,5a,6b,(25R)26-tetrol Metabolite inchikey:PFYSRSDOSXYIFG-JKYVJSSTSA-N
3b,5a,6b-Trihydroxycholestan-(25R)26-oic acid Metabolite inchikey:LMWUOMGULHFSQR-HDEGCWFHSA-N
CYP7A1 GeneProduct hgnc.symbol:CYP7A1
3b-Hydroxy-7-oxochol-5-en-24-oyl-CoA Metabolite inchikey:HEPNPBUPTRNGJT-ILFWFKRZSA-N
Cholestane-3b,5a,6b-triol Metabolite inchikey:YMMFNKXZULYSOQ-RUXQDQFYSA-N
7-Oxocholesterol Metabolite inchikey:YIKKMWSQVKJCOP-ABXCMAEBSA-N
NPC1 GeneProduct HGNC
3b,7b-Dihydroxychol-5-en-24-oyl-glycine Metabolite InChIKey
7b-Peroxycholesterol Metabolite InChIKey
+3O2 Metabolite None
Sphingolipid metabolism Pathway WikiPathways
HSD11B1 GeneProduct HGNC
3b-Hydroxy-7-oxocholest-5-en-(25R)26-oic acid Metabolite InChIKey
3b-Hydroxy-7-oxochol-5-en-24-oic acid Metabolite InChIKey
3b,5a,6b-Trihydroxycholan-24-oic acid Metabolite InChIKey
3b-Hydroxy-7-oxochol-5-en-24-oyl-glycine Metabolite InChIKey
3b,5a-DiH-cholestan-6-one Metabolite InChIKey
3b,7b-Dihydroxycholest-5-en-(25R)26-oic acid Metabolite InChIKey
3b,5a,6b-Trihydroxycholan-24-oyl-CoA Metabolite InChIKey
3b,7b-Dihydroxychol-5-en-24-oyl-CoA Metabolite InChIKey
HSD11B2 GeneProduct HGNC
CYP27A1 GeneProduct HGNC
LOO* Metabolite None
3b,24R-Dihydroxy-7-oxocholest-5-en-(25R)26-oyl-CoA Metabolite InChIKey
3b,5a,6b,24R-Tetrahydroxycholestan-(25R)26-oyl-CoA Metabolite InChIKey
5,6-Epoxycholesterol Metabolite InChIKey
7b,(25R)26-Dihydroxycholesterol Metabolite InChIKey
3b,7b,24R-Trihydroxycholest-5-en-(25R)26-oyl-CoA Metabolite InChIKey
BACS (SLC27A5) GeneProduct HGNC
VLCS (SLC27A2) GeneProduct HGNC
AMACR GeneProduct HGNC
ACOX2 GeneProduct HGNC
DBP GeneProduct HGNC
SCPx (SCP2) GeneProduct HGNC
DBP GeneProduct HGNC
BAAT GeneProduct HGNC
ACOT1 Protein Uniprot-TrEMBL
ACOT Protein Enzyme Nomenclature
ACOT2 Protein Uniprot-TrEMBL
ACOT4 Protein Uniprot-TrEMBL
ACOT6 Protein Uniprot-TrEMBL
ACOT7 Protein Uniprot-TrEMBL
ACOT8 Protein Uniprot-TrEMBL
ACOT9 Protein Uniprot-TrEMBL
ACOT11 Protein Uniprot-TrEMBL
ACOT12 Protein Uniprot-TrEMBL
ACOT13 Protein Uniprot-TrEMBL
ACOT7L Protein Uniprot-TrEMBL
ACOT15 Protein Uniprot-TrEMBL
ChEH Protein Uniprot-TrEMBL
CYP27A1 GeneProduct HGNC
BACS (SLC27A5) GeneProduct HGNC
VLCS (SLC27A2) GeneProduct HGNC
AMACR GeneProduct HGNC
ACOX2 GeneProduct HGNC
DBP GeneProduct HGNC
SCPx (SCP2) GeneProduct HGNC
DBP GeneProduct HGNC
BAAT GeneProduct HGNC
ACOT1 Protein Uniprot-TrEMBL
ACOT Protein Enzyme Nomenclature
ACOT2 Protein Uniprot-TrEMBL
ACOT4 Protein Uniprot-TrEMBL
ACOT6 Protein Uniprot-TrEMBL
ACOT7 Protein Uniprot-TrEMBL
ACOT8 Protein Uniprot-TrEMBL
ACOT9 Protein Uniprot-TrEMBL
ACOT11 Protein Uniprot-TrEMBL
ACOT12 Protein Uniprot-TrEMBL
ACOT13 Protein Uniprot-TrEMBL
ACOT7L Protein Uniprot-TrEMBL
ACOT15 Protein Uniprot-TrEMBL
HSD11B2 GeneProduct HGNC
HSD11B1 GeneProduct HGNC
HSD11B2 GeneProduct HGNC
HSD11B1 GeneProduct HGNC
HSD11B2 GeneProduct HGNC
LOOH Metabolite None
LO* Metabolite None
LOO* Metabolite None
LOH Metabolite None
+1O2 Metabolite None
DHCR7 Protein Uniprot-TrEMBL
D8D7I Protein Uniprot-TrEMBL
Cholesterol Metabolite InChIKey
NPC2 GeneProduct HGNC
Cholesterol Metabolite InChIKey
None

References

  1. Jones JM, Gould SJ. Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase. Biochem Biophys Res Commun. 2000 Aug 18;275(1):233–40. PubMed Europe PMC Scholia
  2. Schweizer RAS, Zürcher M, Balazs Z, Dick B, Odermatt A. Rapid hepatic metabolism of 7-ketocholesterol by 11beta-hydroxysteroid dehydrogenase type 1: species-specific differences between the rat, human, and hamster enzyme. J Biol Chem. 2004 Apr 30;279(18):18415–24. PubMed Europe PMC Scholia
  3. Hult M, Elleby B, Shafqat N, Svensson S, Rane A, Jörnvall H, et al. Human and rodent type 1 11beta-hydroxysteroid dehydrogenases are 7beta-hydroxycholesterol dehydrogenases involved in oxysterol metabolism. Cell Mol Life Sci. 2004 Apr;61(7–8):992–9. PubMed Europe PMC Scholia
  4. Hunt MC, Rautanen A, Westin MAK, Svensson LT, Alexson SEH. Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs. FASEB J. 2006 Sep;20(11):1855–64. PubMed Europe PMC Scholia
  5. de Medina P, Paillasse MR, Segala G, Poirot M, Silvente-Poirot S. Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13520–5. PubMed Europe PMC Scholia
  6. Porter FD, Scherrer DE, Lanier MH, Langmade SJ, Molugu V, Gale SE, et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med. 2010 Nov 3;2(56):56ra81. PubMed Europe PMC Scholia
  7. Clayton PT. Disorders of bile acid synthesis. J Inherit Metab Dis. 2011 Jun;34(3):593–604. PubMed Europe PMC Scholia
  8. Shinkyo R, Xu L, Tallman KA, Cheng Q, Porter NA, Guengerich FP. Conversion of 7-dehydrocholesterol to 7-ketocholesterol is catalyzed by human cytochrome P450 7A1 and occurs by direct oxidation without an epoxide intermediate. J Biol Chem. 2011 Sep 23;286(38):33021–8. PubMed Europe PMC Scholia
  9. Shackleton CHL. Role of a disordered steroid metabolome in the elucidation of sterol and steroid biosynthesis. Lipids. 2012 Jan;47(1):1–12. PubMed Europe PMC Scholia
  10. Mitić T, Shave S, Semjonous N, McNae I, Cobice DF, Lavery GG, et al. 11β-Hydroxysteroid dehydrogenase type 1 contributes to the balance between 7-keto- and 7-hydroxy-oxysterols in vivo. Biochem Pharmacol. 2013 Jul 1;86(1):146–53. PubMed Europe PMC Scholia
  11. de Medina P, Paillasse MR, Segala G, Voisin M, Mhamdi L, Dalenc F, et al. Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties. Nat Commun. 2013;4:1840. PubMed Europe PMC Scholia
  12. Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014 Feb;13(2):397–406. PubMed Europe PMC Scholia
  13. Vance JE, Karten B. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res. 2014 Aug;55(8):1609–21. PubMed Europe PMC Scholia
  14. Klinke G, Rohrbach M, Giugliani R, Burda P, Baumgartner MR, Tran C, et al. LC-MS/MS based assay and reference intervals in children and adolescents for oxysterols elevated in Niemann-Pick diseases. Clin Biochem. 2015 Jun;48(9):596–602. PubMed Europe PMC Scholia
  15. Raleigh DR, Sever N, Choksi PK, Sigg MA, Hines KM, Thompson BM, et al. Cilia-Associated Oxysterols Activate Smoothened. Mol Cell. 2018 Oct 18;72(2):316-327.e5. PubMed Europe PMC Scholia
  16. Griffiths WJ, Wang Y. Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat. 2020 Apr;147:106381. PubMed Europe PMC Scholia