Oxidative phosphorylation (WP623)

Oxidative phosphorylation is the process in which ATP is formed as a result of the transfer of electrons from NADH or FADH2 to O2 by a series of electron carriers. This process, which takes place in mitochondria, is the major source of ATP in aerobic organisms. [https://www.ncbi.nlm.nih.gov/books/NBK21208/] Proteins on this pathway have targeted assays available via the [https://assays.cancer.gov/available_assays?wp_id=WP623 CPTAC Assay Portal]
last edited

Authors

Andra, MartijnVanIersel, Khanspers, MaintBot, AlexanderPico, AllanKuchinsky, Zari, Mkutmon, DeSl, Egonw, and Fehrhart

Cited In

Organism

Homo sapiens

Communities

Annotations

Pathway Ontology: oxidative phosphorylation pathway

Participants

Label Type Compact Identifier
NDUFS7 GeneProduct ncbigene:374291
ATP5D GeneProduct ncbigene:513
ATP5G3 GeneProduct ncbigene:518
NDUFA4 GeneProduct ncbigene:4697
NDUFB4 GeneProduct ncbigene:4710
NDUFS5 GeneProduct ncbigene:4725
B22 GeneProduct ncbigene:4715
CI-75Kd GeneProduct ncbigene:4719
B9 GeneProduct ncbigene:4696
ATP5G1 GeneProduct ncbigene:516
B18 GeneProduct ncbigene:4713
NAD Metabolite hmdb:HMDB0000902
NDUFB2 GeneProduct ncbigene:4708
CI-SGDH GeneProduct ncbigene:4707
ATP6 GeneProduct ncbigene:4508
NDUFS6 GeneProduct ncbigene:4726
KFYI GeneProduct ncbigene:4717
NDUFV3 GeneProduct ncbigene:4731
ASHI GeneProduct ncbigene:4714
NDUFA8 GeneProduct ncbigene:4702
FASN2A GeneProduct ncbigene:4706
B13 GeneProduct ncbigene:4698
NADH Metabolite hmdb:HMDB0001487
B17 GeneProduct ncbigene:4712
CI-42KD GeneProduct ncbigene:4705
NDUFA9 GeneProduct ncbigene:4704
ATP5O GeneProduct ncbigene:539
B14.5a GeneProduct ncbigene:4701
ATP5F1 GeneProduct ncbigene:515
ADP Metabolite hmdb:HMDB0001341
B14.5b GeneProduct ncbigene:4718
ATP5L GeneProduct ncbigene:10632
ATP Metabolite hmdb:HMDB0000538
MT-ATP6 GeneProduct ensembl:ENSG00000198899
MT-ATP8 GeneProduct ensembl:ENSG00000198744
AQDQ GeneProduct ncbigene:4724
ND4L GeneProduct ncbigene:4539
NUOMS GeneProduct ncbigene:56901
ATP5G2 GeneProduct ncbigene:517
NDUFB10 GeneProduct ncbigene:4716
GZMB GeneProduct ncbigene:3002
ATP5H GeneProduct ncbigene:10476
NDUFS3 GeneProduct ncbigene:4722
NDUFV2 GeneProduct ncbigene:4729
ND5 GeneProduct ncbigene:4540
ND3 GeneProduct ncbigene:4537
ATP5G1 GeneProduct ncbigene:516
NDUFA2 GeneProduct ncbigene:4695
B15 GeneProduct ncbigene:4710
NDUFS2 GeneProduct ncbigene:4720
NDUFS8 GeneProduct ncbigene:4728
Hydrogen Metabolite chebi:15378
ATP6AP1 GeneProduct ncbigene:537
CI-SGDH GeneProduct ncbigene:4711
ATP5E GeneProduct ncbigene:514
ATP5I GeneProduct ncbigene:521
ATP5B GeneProduct ncbigene:506
ND1 GeneProduct ncbigene:4535
ATP5S GeneProduct ncbigene:27109
ATP5J GeneProduct ncbigene:522
ATP6AP2 GeneProduct ncbigene:10159
ATP5J2 GeneProduct ncbigene:9551
B14 GeneProduct ncbigene:4700
ND6 GeneProduct ncbigene:4541
NDUFA11 GeneProduct ncbigene:126328
ATP5A1 GeneProduct ncbigene:498
CI-51kD GeneProduct ncbigene:4723
ND4 GeneProduct ncbigene:4538
ND2 GeneProduct ncbigene:4536

References

  1. Mitchell P. Keilin’s respiratory chain concept and its chemiosmotic consequences. Science. 1979 Dec 7;206(4423):1148–59. PubMed Europe PMC Scholia
  2. Mathews FS. The structure, function and evolution of cytochromes. Prog Biophys Mol Biol. 1985;45(1):1–56. PubMed Europe PMC Scholia
  3. Mitchell P, Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature. 1967 Jan 14;213(5072):137–9. PubMed Europe PMC Scholia
  4. Tager JM, Veldsema-Currie RD, Slater EC. Chemi-osmotic theory of oxidative phosphorylation. Nature. 1966 Oct 22;212(5060):376–9. PubMed Europe PMC Scholia
  5. Porter RK, Brand MD. Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes. Biochem J. 1995 Sep 1;310 ( Pt 2)(Pt 2):379–82. PubMed Europe PMC Scholia
  6. Dimroth P, Kaim G, Matthey U. Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases. J Exp Biol. 2000 Jan;203(Pt 1):51–9. PubMed Europe PMC Scholia
  7. Schultz BE, Chan SI. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu Rev Biophys Biomol Struct. 2001;30:23–65. PubMed Europe PMC Scholia
  8. Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001 Dec;20(6):591–8. PubMed Europe PMC Scholia
  9. Rich PR. The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans. 2003 Dec;31(Pt 6):1095–105. PubMed Europe PMC Scholia
  10. Rutkowski B, Swierczynski J, Slominska E, Szolkiewicz M, Smolenski RT, Marlewski M, et al. Disturbances of purine nucleotide metabolism in uremia. Semin Nephrol. 2004 Sep;24(5):479–83. PubMed Europe PMC Scholia
  11. Quinton TM, Kim S, Jin J, Kunapuli SP. Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. J Thromb Haemost. 2005 May;3(5):1036–41. PubMed Europe PMC Scholia